

Modelling and experimental studies relating to gases and particulates emission from coal/biomass combustion.

> Professor Mohamed Pourkashanian Professor Alan Williams ETII, University of Leeds

> > April 2013

Research Groups

Prof Mohamed Pourkashanian

Drs Lin Ma, Kevin Hughes and Bill Nimmo

Pilot plant facilities /PACT with other Universities including Cranfield Furnace and burner CFD modelling for NOx, other gases Particulate formation and ash deposition. Pilot plant facilities: Experimental investigation of combustion of coal, biomass

Prof Jenny Jones

Drs Leilani Darvell and Abby Saddawi Laboratory scale and theoretical investigation of biomass combustion and cofiring. Work on NOx from biomass, particulates especially smoke. Torrefied fuels.

1. Large Scale Combustion Equipment

250kW Air Combustion Plant

- 250kWth, 2.5m³ cylindrical downfired rig
- coal/biomass burner
- Air metering skid, fuel feeding system, water cooling and temperature monitoring system and flue gas filter.
- Dedicated control system interconnected to a central control & monitoring system

250 kW Coal combustion rig

Panoramic image of upper level

Panoramic image of lower level

Burners

- 250 kW staged Doosan Babcock burner
- □ scaled version of their commercial Mark III Low-NO_x burner
- swirled Secondary / Tertiary registers

Coal burner

Biomass burner

250 kW oxy-fuel pilot plant

Flame imaging 2-D and 3-D

2. Theoretical/Fundamental Studies

Coal/Biomass Combustion

NOx Formation Mechanism

The HCN/NH₃ ratio in the volatiles depends on the type of biomass.

Biomass N-Compounds

Fuel Staging: Rich

Soot Routes from Biomass Combustion

Char Combustion

Wood

Coal

Biomass char particles can have complex shapes making CFD modelling difficult: some have very complex shapes as in the next slide

Drop tube reactor

Three-zone furnace

Max. Temp: 1500° C Reaction zone: 0.61 m Work tube: 1.4m, i.d. 65 mm

Char Combustion

Devolatilisation: Nitrogen-Partitioning

Fuel	PKE	Olive Residue	Miscanthus	Willow Coppice
Fuel-N % daf	2.8	1.4	0.58	0.36
% Fuel-N in Char (% total N in the fuel)	9.0	18.2	15.3	30.3
Char yield % daf	15	27	15	9

NO from Coal/Biomass Char

3. Combustion Modelling

Zone modelling CFD modelling

Zone Modelling

Simple models which need temperature input but permits complex combustion calculations

CFD-Particle Temperatures

Typical Particle Traces Coloured by Particle Temperatures

Near-Burner Region

Influence of Intermittency

Modelling Coal Combustion Using LES

Furnace Modelling

Approach

- 1. Fundamental and CFD modelling of single flames (0.1-10 MW_{th})
- 2. CFD boiler modelling
- 3. Full plant model development in gPROMS
- 4. Development of detailed models for heat transfer using data integrated directly from CFD results

CFD Boiler modelling

Flame shape

CFD-predicted temperature contours, K

CFD Boiler modelling

T-fired Furnace

